Remote Vision Using Drones and VR Headset Technology

Remote Vision Using Drones and VR Headset Technology

Article here:
Using a combination of stereoscopic split screen camera mounts, lightweight WiFi cameras (transmitting at 2.4 GHz) and a visual headset for smartphones we can implement an easily replicable system for remote viewing using UAVs (“Drones”) and augmented reality using head-mounted display (HMD) systems.

The remote wireless camera therefore is designed to be stereoscopic to record the sense of depth. The camera consists of a split screen mount for a camera which consists of a series of mirrors which receive an image from 2 different viewing points of the target image, forming images of the left and right field of view, and reflects each image using 2 parallel mirrors into the a CCD camera focus for recording and/or transmission.

This gives a more realistic and comfortable viewing using a VR Headset which includes the sense of depth which would otherwise be lost if we were simply receiving the image from a single lens camera alone.

This sense of depth is an important factor to be included in augmented reality should we be using this live system for steering a UAV “drone” craft where we want to mitigate mistakes made by the pilot as much as possible.

This means we must create as comfortable conditions as possible as to not disturb the pilot and this means creating a visual feed system which is natural to the UAV pilot.

A stereoscopic point of view is more natural for human beings and this helps create the illusion that we are flying from the craft’s field of view.

In developing this craft we want to provide lightweight but nonetheless high quality optics.

We have found that by treating the lightweight Plexiglas windows with SiO2 nanoparticles can greatly reduce fogging which can otherwise reduce visibility (particularly in an environment such as Ireland where atmospheric fogs and mists are common). The layer of SiO2 also gives the Plexiglass an extra resistance against scratches and corrosion that plastics are vulnerable to.

Depositing the nanoparticles in water solution is one method to enhance the anti-fogging ability, however it is a wet process and sometimes messy.

We have made further enhancements of this problem by treating a porous glass optic shining cloth, such as those used for shining the lenses of glasses and other optics, with SiO2 nanoparticles and create a layer of SiO2 nanoparticles on the cloth itself which we can lightly buffer onto the Plexiglass windows.

It is hoped that these slight experimental enhancements can give an edge to increase visibility in remote augmented reality and virtual vision systems for use in UAVs and other applications.

Project and Article Designed and Written by MuonRay Enterprises Ireland.

Advertise Here

Free Email Updates
Get the latest content first.
We respect your privacy.

Toy Drones With Camera

Advertise Here

Toy Drones For Kids

Toy Drones

Advertise Here